Algebraic Structures of Quantum Projective Field Theory Related to Fusion and Braiding. Hidden Additive Weight

نویسنده

  • Denis Juriev
چکیده

The interaction of various algebraic structures, describing fusion, braiding and group symmetries in quantum projective field theory, is an object of an investigation in the paper. Structures of projective Zamolodchikov algebras, their representations, spherical correlation functions, correlation characters and envelopping QPFT–operator algebras, projective Ẅ–algebras, shift algebras, infinite dimensional R–matrices Rproj(u) and R ∗ proj(u) of the QPFT, braiding admissible QPFT– operator algebras and projective G–hypermultiplets are explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

/ 00 01 12 9 v 1 2 0 Ja n 20 00 Algebraic Quantum Field Theory , Perturbation Theory , and the Loop Expansion

The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A of observables “u...

متن کامل

Algebraic Quantum Field Theory, Perturbation Theory, and the Loop Expansion

The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A(n) of observables...

متن کامل

Quantum Field Theories on Algebraic Curves and A. Weil Reciprocity Law

Using Serre’s adelic interpretation of the cohomology, we develop “differential and integral calculus” on an algebraic curve X over an algebraically closed constant field k of characteristic zero, define an algebraic analogs of additive and multiplicative multi-valued functions on X, and prove corresponding generalized residue theorem and A. Weil reciprocity law. Using the representation theory...

متن کامل

Rings of Singularities

This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...

متن کامل

Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

A novel algebraic topology approach to supersymmetry (SUSY) and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn–Teller effects, superfluidity, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994